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Abstract We consider a model for a population in a heterogeneous environment, with logistic-type local

population dynamics, under the assumption that individuals can switch between two different nonzero rates of

diffusion. Such switching behavior has been observed in some natural systems. We study how environmental

heterogeneity and the rates of switching and diffusion affect the persistence of the population. The reaction-

diffusion systems in the models can be cooperative at some population densities and competitive at others. The

results extend our previous work on similar models in homogeneous environments. We also consider competition

between two populations that are ecologically identical, but where one population diffuses at a fixed rate and

the other switches between two different diffusion rates. The motivation for that is to gain insight into when

switching might be advantageous versus diffusing at a fixed rate. This is a variation on the classical results for

ecologically identical competitors with differing fixed diffusion rates, where it is well known that “the slower

diffuser wins”.
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1 Introduction

The problem of understanding how dispersal patterns affect population interactions and thus are subject

to evolutionarily selection has generated much interest among mathematical biologists. Classical models

for dispersal typically assume that any given type of organism will disperse according to a single pattern

or strategy, which may or may not be conditional on environmental conditions. Various models of that

type are discussed in [4, 8]. One specific line of inquiry that has generated significant interest is the

problem of deciding which types of dispersal, if any, are advantageous. A well-known result in that

direction is that in environments that vary in space but not in time, if populations that are ecologically
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identical except for their dispersal pattern compete, and the populations diffuse at different rates, the

slower diffuser wins [10, 18]. However, there is considerable evidence that many organisms can switch

between different dispersal modes depending on whether they are searching for resources or exploiting

them (see [13, 14, 32–35, 42]). Models that capture the idea of switching between movement modes are

developed in [12, 36, 41]. In [6] we developed basic theory for a model where a population consists of

two sub-populations that diffuse at different rates, individuals can switch between sub-populations, and

where there is logistic-type self-limitation. Somewhat similar types of models have been proposed in a

related but different context, where a population has sub-populations that have different dispersal rates

and perhaps different population dynamics and each sub-population is subject to mutations that produce

offspring that belong to other sub-populations. This idea was already discussed in [10]. It has been

used to study how dispersal polymorphism can affect the spreading speed of biological invasions [11,31].

Some very strong and interesting results on traveling waves, spreading speeds, and dynamics for Fisher-

Kolmogorov-Petrovsky-Piskunov (KPP) models with switching or mutation are presented in [15–17].

Existence results for equilibria of some related systems on bounded domains are derived in [2, 20].

The models for populations where individuals can switch between two sub-populations that we con-

sidered in [6] and will use here turn out to potentially be cooperative systems at some densities and

competitive ones at others. Roughly speaking, when switching rates are high, the models are asymptot-

ically cooperative while if switching rates are low they are asymptotically competitive. The version of

the model treated in [6] had constant coefficients. In the present paper we extend some of the results

of [6] to cases where some coefficients can vary in space. We also consider a model for competition on

a bounded domain between a population whose members can switch between two diffusion rates and an

otherwise ecologically identical population whose members diffuse at a single intermediate rate. This

is motivated by previous work from the viewpoint of [10] on the evolution of slow diffusion in systems

where each competing population has a single fixed diffusion rate. See [19] for more recent results that

give a more complete treatment of the case of two competing populations with fixed diffusion rates. We

are primarily interested in extending results such as those in [10, 19] on how diffusion rates influence

competitive interactions to the case where one of the competitors switches between two diffusion rates.

We have chosen to follow their modeling assumptions and use no-flux boundary conditions, which are

Neumann boundary conditions in our models. The reason for that choice is that with Dirichlet or Robin

boundary conditions, increasing the diffusion rate causes a loss of population across the domain boundary

as well as causing different movement patterns in the interior, so it is clear that faster diffusion will be

a disadvantage. However, in the Neumann case, there is no boundary loss so it is very interesting that

faster diffusion may still be a disadvantage. In [6] we considered both Neumann and Dirichlet boundary

conditions in the case of a single population that could switch between two different diffusion rates. We

found that many of the general abstract results about the models with Dirichlet conditions were similar

to those for models with Neumann conditions, but there were some differences in more refined specific

results, and in some cases Dirichlet conditions caused additional technical difficulties that limited what

we could do (see [6] for details). It would be interesting to consider Dirichlet boundary conditions in the

of models we study in this paper. That would present some challenges but based on the analysis in [6] it

should be possible to make some progress. More generally we think that extending the theory for models

with switching to cover a broader range of dispersal operators, boundary conditions, and population

interactions is an interesting topic for future research.

It turns out that in our model the result of the competition between the populations with and without

switching depends on the relative sizes of the diffusion coefficients and on the rates of switching between

faster and slower diffusion by the population that uses two distinct movement modes. In studying

competition between populations with and without switching, we assume that the system describing

the switching competitor is asymptotically cooperative, so that the full system is eventually cooperative-

cooperative-competitive. This type of system was considered in the case of ordinary differential equations

in [37, 38]. It is monotone with respect to the ordering given by (u1, v1, w1) > (u2, v2, w2) ⇔ u1 > u2, v1
> v2, w1 6 w2. The main methods we use are primarily monotone dynamical systems theory, positive

operator theory (specifically the Krein-Rutman theorem), and estimates of principal eigenvalues.
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2 Analysis of semi-trivial steady states

Consider the system

∂u

∂t
= d1∆u− α(x)u+ β(x)v + u(m(x)− u− bv) in (0,∞)× Ω,

∂v

∂t
= d2∆v + α(x)u− β(x)v + v(m(x)− cu− v) in (0,∞)× Ω,

∂u

∂n
=
∂v

∂n
= 0 on (0,∞)× ∂Ω,

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x) in Ω,

(2.1)

where Ω ⊂ RN (N > 1) is a bounded domain with boundary ∂Ω of class C2+θ (0 < θ 6 1), and ∂
∂n

denotes the differentiation in the direction of outward normal n to ∂Ω. In general, we suppose that

0 < d1 6 d2 and α, β,m ∈ Cν(Ω̄) (0 < ν < 1), α(x) and β(x) are non-negative and both positive for some

x0 ∈ Ω̄. We also assume that m(x) is positive for some x1 ∈ Ω̄, but we consider some cases where m(x)

changes sign and others where m(x) is positive. The system (2.1) describes the dispersal and population

dynamics of a single species that is divided into two groups, for example individuals that are seeking

resources and other individuals who have found resources and are exploiting them, and where individuals

can switch between groups. The corresponding model with constant coefficients was studied in [6]. In

this section we extend some of the ideas and results of [6] to cases with variable coefficients.

The local existence of classical solutions follows from standard results (see for example the discussion

and references in [4, Subsections 1.6.5 and 1.6.6]). The global existence follows if solutions are bounded

by some finite B(T ) in [L∞(Ω)]2 on any finite time interval (0, T ) with T > 0. Let

g1(x, u, v) = (m(x)− α(x)− u)u+ (β(x)− bu)v,

g2(x, u, v) = (m(x)− β(x)− v)v + (α(x)− cv)u.
(2.2)

Clearly, there exist M+, N+ > 0 such that g1(x,M
+, v) < 0 and g2(x, u,N

+) < 0 for any (x, u, v) ∈
Ω̄ × [0,M+] × [0, N+]. For such (x, u, v), we have g1(x, u, v) > u(m − α − bN+ − u) + β(x)v, and

g2(x, u, v) > v(m − β − cM+ − v) + α(x)u. The comparison principle for a scalar parabolic equation

applied to each of the equations in (2.1) implies that for any nonnegative and nontrivial initial data, the

solution of the system (2.1) will stay positive for any t > 0. Indeed, we have the following result on the

uniform boundedness of the solution.

Proposition 2.1. There exist positive numbers B1 and B2, such that for any M > B1 and

N > B2, the rectangular region [0,M ]× [0, N ] is invariant and attracting from above, i.e., g1(x, 0, v) > 0,

g2(x, u, 0) > 0, g1(x,M, v) < 0 and g2(x, u,N) < 0, for any (x, u, v) ∈ Ω̄ × [0,M ] × [0, N ]. Thus,

any solution of (2.1) with nonnegative bounded initial data exists for all t > 0, and eventually lies in

the rectangular region [0, B1] × [0, B2]. Moreover, if there exist positive numbers A1 and A2 such that

g1(x,A1, v) > 0 and g2(x, u,A2) > 0 for any (x, u, v) ∈ Ω̄×[A1, B1]×[A2, B2], then any nontrivial solution

of (2.1) with nonnegative bounded initial data eventually lies in the rectangular region [A1, B1]× [A2, B2].

Proof. We only show the second part of the proof. Let

g−i (u1, u2) = inf{gi(x, θ1, θ2), θi = ui, (x, θj) ∈ Ω̄× [uj , Bj ], j ̸= i}, i = 1, 2.

Then g−i (u1, u2), i = 1, 2 is Lipschitz continuous in [0, B1] × [0, B2] and g−i (u1, u2) is nondecreasing

with uj , j ̸= i, i = 1, 2. Thus, the ODE system dui

dt = g−i (u1, u2), i = 1, 2, is a cooperative system. By

our assumption, we see that

g−1 (A1, v) > g−1 (A1, A2) = inf{g1(x,A1, v), (x, v) ∈ Ω̄× [A2, B2]} > 0

for any v ∈ [A2, B2] and g−2 (u,A2) > 0 for any u ∈ [A1, B1]. Thus (A1, A2) is a strict lower solution

for the ODE system. Note that g = (g1, g2) is subhomogeneous, in the sense that, for any γ ∈ (0, 1],
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gi(x, γu1, γu2) > γgi(x, u1, u2), (u1, u2) ∈ [0, B1] × [0, B2], i = 1, 2, and thus so is g−i , i = 1, 2. One can

show that for any γ ∈ (0, 1], [γA1, B1]× [γA2, B2] is contracting from below for the ODE system. Indeed,

g−1 (γA1, v) > g−1 (γA1, γA2) > γg−1 (A1, A2) > 0 for any v ∈ [γA2, B2]. Let U(t, x, ϕ) be a solution

of the system (2.1) with U(0, x, ϕ) = (ϕ1, ϕ2) ∈ (0, B1] × (0, B2]. Then there exists γ0 ∈ (0, 1) such

that ϕi > γ0Ai > 0, i = 1, 2. Let U−(t) be the solution of Ut = G−(U) = (g−1 (u1, u2), g
−
2 (u1, u2)) with

U−(0) = (γ0A1, γ0A2). It follows from [7, Theorem 1] that U(t, x, ϕ) > U−(t) for any t > 0. Indeed,

U−(t) is nondecreasing in t and bounded from above and thus converges to some positive point. Since

limt→∞ U−(t) > (A1+ϵ, A2+ϵ) for some small ϵ > 0, U(t, x, ϕ) will eventually lie in [A1, B1]×[A2, B2].

Set F := minx∈Ω̄ F (x) and F̄ := maxx∈Ω̄ F (x). Based on the preceding observations, we obtain the

following result.

Proposition 2.2. The following statements are valid:

(1) Assume that m, α, β > 0 and let k = min{α/ᾱ, β/β̄} 6 1. If k > max{1−m/(bm̄), 1−m/(cm̄)}
and (β̄, ᾱ) ∈ S1 := {(x, y) : m+ b(k− 1)m̄− y−x/b > 0,m+ c(k− 1)m̄−x− y/c > 0, x > 0, y > 0}, then
any solution of the system (2.1) with positive bounded initial data eventually lies in (β̄/b, m̄]× (ᾱ/c, m̄],

where (2.1) is a competitive system.

(2) Let k1 := max{β̄/β, ᾱ/α} > 1. Assume that k1 < 1 + k0, where k0 is the larger root of

(bx − c)(cx − b) − 1 = 0. Then any solution of the system (2.1) with positive bounded initial data

eventually lies in (0, β/b) × (0, α/c), where (2.1) is a cooperative system, provided (β/b, α/c) ∈ S2 :=

{(x, y) : m̄− x+ (b(k1 − 1)− c)y < 0, m̄− y + (c(k1 − 1)− b)x < 0, x > 0, y > 0}.
Proof. (1) Clearly, if (β̄, ᾱ) ∈ S1, then g1(x, m̄, v) < (β̄ − bm̄)v 6 0 for any v ∈ [0, m̄] and g2(x, u, m̄)

< (ᾱ− cm̄)u 6 0 for any u ∈ [0, m̄]. Moreover,

g1

(
x,
β̄

b
, v

)
>
(
m− ᾱ− β̄

b

)
β̄

b
+ (β − β̄)m̄ > β̄

b

[
m− ᾱ− β̄

b
+ b(k − 1)m̄

]
> 0

and

g2

(
x, u,

ᾱ

c

)
>
(
m− β̄ − ᾱ

c

)
ᾱ

c
+ (α− ᾱ)m̄ > ᾱ

c

[
m− β̄ − ᾱ

c
+ c(k − 1)m̄

]
> 0

for any (x, u, v) ∈ Ω̄ × [βb , m̄] × [αc , m̄]. It follows immediately from Proposition 2.1 that the solution of

the system (2.1) eventually lies in (βb , m̄]× (αc , m̄].

(2) For S2, if either b(k1 − 1) − c 6 0 or c(k1 − 1) − b 6 0, i.e., k1 6 1 + c
b or k1 6 1 + b

c , then S2 is

nonempty. If b(k1− 1)− c > 0 and c(k1− 1)− c > 0, as long as (b(k1− 1)− c)(c(k1− 1)− b) < 1, it is still

nonempty. Clearly k0 > max{ b
c ,

c
b}. Thus if 1 6 k1 < 1 + k0, S2 is nonempty. Now for any (

β

b ,
α
c ) ∈ S2,

we have

g1

(
x,
β

b
, v

)
6
β

b

[
m̄− α−

β

b
+ b(k − 1)

α

c

]
=
β

b

[
m̄−

β

b
+ (b(k − 1)− c)

α

c

]
< 0

and

g2

(
x, u,

α

c

)
6 α

c

[
m̄− β − α

c
+ c(k − 1)

β

b

]
=
α

c

[
m̄− α

c
+ (c(k − 1)− b)

β

b

]
< 0

holds for (x, u, v) ∈ Ω̄× [0,
β

b ]× [0, αc ]. The result then follows.

Throughout this paper, denote by λ(d, e) the principal eigenvalue of

λϕ = d∆ϕ+ e(x)ϕ in Ω,
∂ϕ

∂n
= 0 on ∂Ω.

Here e ∈ L∞(Ω). We collect some useful information on λ(d, e); refer to [3, 4, 19, 21] and the references

therein.

Proposition 2.3. (a) λ(d, e) depends smoothly on d > 0, and depends continuously on e ∈ L∞(Ω).

(b) If e1, e2 ∈ L∞(Ω) and e1(x) > e2(x) in Ω, then λ(d, e1) > λ(d, e2) with equality holding if and only

if e1 ≡ e2 a.e. in Ω.
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(c) If e is non-constant, then λ(d, e) is strictly decreasing in d > 0.

(d) Assume that e is non-constant and changes sign. Then

(i) if
∫
Ω
e > 0, then λ(d, e) > 0;

(ii) if
∫
Ω
e < 0, then there exists a unique µ∗ > 0 independent of d such that, sign(1 − dµ∗)

= sign(λ(d, e)).

By the celebrated Krein-Rutman theorem, the eigenvalue problem

λϕ1 = d1∆ϕ1 − α(x)ϕ1 + β(x)ϕ2 +m(x)ϕ1 in Ω,

λϕ2 = d2∆ϕ2 + α(x)ϕ1 − β(x)ϕ2 +m(x)ϕ2 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

= 0 on ∂Ω

(2.3)

admits a principal eigenvalue λ0 with a positive eigenfunction ψ = (ψ1, ψ2) (see [1, 27, 30]). Clearly, if

m > 0 on Ω̄, then λ0 > 0; if m < 0 on Ω̄, then λ0 < 0. An interesting question arises when m changes

sign. In that case, what kind of sufficient conditions will guarantee that λ0 > 0, so that 0 is linearly

unstable? Next, we explore some sufficient conditions through some simple investigation.

Proposition 2.4. Assume that m changes sign. Then the following statements are valid:

(i) If max{λ(d1,m− α), λ(d2,m− β)} > 0, then λ0 > 0.

(ii) If
∫
Ω
m >

∫
Ω
(
√
α−

√
β)2

2 , then λ0 > 0.

Proof. Observe that (λ0I − L1)ϕ = βψ2 > 0 ̸≡ 0 in Ω has a unique positive solution ψ1, where

L1ϕ := d1∆ϕ1 + (m(x) − α(x))ϕ1 with the zero Neumann boundary condition. This yields that λ0 >

s(L1) = λ(d1,m− α). Similarly, we have λ0 > λ(d2,m− β). Consequently, the statement (i) holds true.

Note that the components of the positive eigenfunction ψ = (ψ1, ψ2) associated with λ0 cannot both be

constant. Otherwise, adding equations of (2.3) together, we obtain that λ0 = m(x), which is impossible.

Now dividing equations of (2.3) by ψi, i = 1, 2 and integrating over Ω, respectively, we have

2λ0 = d1

∫
Ω

∣∣∣∣∇ψ1

ψ1

∣∣∣∣2 + d2

∫
Ω

∣∣∣∣∇ψ2

ψ2

∣∣∣∣2 + 2

∫
Ω

m−
∫
Ω

α−
∫
Ω

β +

∫
Ω

(
β
ψ2

ψ1
+ α

ψ1

ψ2

)
> 2

∫
Ω

m−
∫
Ω

α−
∫
Ω

β + 2

∫
Ω

√
αβ > 2

∫
Ω

m−
∫
Ω

(
√
α−

√
β)2 > 0.

This completes the proof.

We can also examine our eigenvalue problem (2.3), by inserting a parameter µ multiplying m and

considering how the principal eigenvalue depends on µ. Let λ(µ), µ ∈ R be the principal eigenvalue of

λϕ1 = d1∆ϕ1 − α(x)ϕ1 + β(x)ϕ2 + µm(x)ϕ1 in Ω,

λϕ2 = d2∆ϕ2 + α(x)ϕ1 − β(x)ϕ2 + µm(x)ϕ2 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

= 0 on ∂Ω.

(2.4)

It is easy to see that the principal eigenvalue λ(0) of (2.4) is zero with a positive eigenfunction (Φ∗
1,Φ

∗
2).

The principal eigenvalue λ(µ) is always simple and isolated by [30, Theorem 4.1], so it is analytic in µ

by results from [26, Chapter 7, Section 1 and Chapter 2, Section 1]. The operator on the right-hand side

of (2.4) has a positive resolvent, so λ(µ) is convex in µ by results of [25]. Let λ̃(µ) and ϕ̃ > 0 be the

principal eigenvalue and eigenfunction for

λϕ1 = d1∆ϕ− α(x)ϕ1 + µm(x)ϕ in Ω,
∂ϕ

∂n
= 0 on ∂Ω.

Since we assume that m(x) > 0 for some x, [21, Lemma 15.4] implies that λ̃(µ) → ∞ as µ → ∞. (The

notation of [21] switches the roles of λ and µ we use in our notation and puts a minus sign on the
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eigenvalues corresponding to those we denote by λ.) Finally, if we multiply the first equation of (2.4)

by ϕ̃, integrate over Ω, then use Green’s formula and the equation for ϕ we obtain

[λ(µ)− λ̃(µ)]

∫
Ω

ϕ1ϕ̃ =

∫
Ω

βϕ2ϕ̃ > 0,

so that λ(µ) > λ̃(µ) and hence λ(µ) → ∞ as µ → ∞. Alternatively, we can show that λ(µ) and the

normalized eigenfunctions associated with it are differentiable by methods similar to those used in the

proof of Lemma 1.2 of [3]. (We show the details of a similar argument later in this paper, in the proof of

Lemma 5.1.) We have the following observation.

Proposition 2.5. Assume that m changes sign. Then the following statements are valid:

(i) If
∫
Ω
m(Φ∗

1 +Φ∗
2) > 0, then λ0 > 0.

(ii) If
∫
Ω
m(Φ∗

1 +Φ∗
2) < 0, then there exists a unique positive µ0 > 0 such that sign(1−µ0) = sign(λ0).

Proof. If λ′(0) > 0, it then easily follows from the convexity of λ(µ) that λ(µ) > λ(0) = 0, ∀µ > 0. If

λ′(0) = 0, since λ(µ) is analytic, convex and λ(∞) = ∞, we have λ′(µ) > λ′(0) = 0 for µ > 0. Thus,

λ(µ) > λ(0) = 0. If λ′(0) < 0, then λ(µ) < 0 for 0 < µ ≪ 1. Note that λ(∞) = ∞, we infer that there

exists a µ0 > 0 such that λ(µ0) = 0. Now the convexity and analyticity of λ(µ) yield that µ0 has to be

unique. Moreover, λ(µ) < 0 when 0 < µ < µ0, and λ(µ) > 0 when µ > µ0.

Next, we compute λ′(0). Let (Φ̃1(x, µ), Φ̃2(x, µ)) be the positive eigenfunction associated with λ(µ).

By arguments similar to those used in the proofs of Lemma 1.2 of [3] and Lemma 5.1 of the present

paper, we can differentiate (2.4) with respect to µ at µ = 0. It then follows that

λ′(0)Φ∗
1 = d1∆Φ̃1µ − α(x)Φ̃1µ + β(x)Φ̃2µ +m(x)Φ∗

1,

λ′(0)Φ∗
2 = d2∆Φ̃2µ + α(x)Φ̃1µ − β(x)Φ̃2µ +m(x)Φ∗

2, (2.5)

where Φ̃iµ = ∂Φ̃i

∂µ (x, 0), i = 1, 2. Adding the above equations together and integrating over Ω, we obtain

that

λ′(0) =

∫
Ω
m(Φ∗

1 +Φ∗
2)∫

Ω
(Φ∗

1 +Φ∗
2)

.

The proof is completed.

Note that

0 = d1∆Φ∗
1 − α(x)Φ∗

1 + β(x)Φ∗
2,

0 = d2∆Φ∗
2 + α(x)Φ∗

1 − β(x)Φ∗
2, (2.6)

∂Φ∗
1

∂n
=
∂Φ∗

2

∂n
= 0

implies ∆(d1Φ
∗
1 + d2Φ

∗
2) = 0 in Ω, and

∂(d1Φ
∗
1+d2Φ

∗
2)

∂n = 0 on ∂Ω. Therefore, d1Φ
∗
1 + d2Φ

∗
2 = C > 0 for

some constant C. Then substitute Φ∗
2 = C

d2
− d1

d2
Φ∗

1 into the first equation of (2.6) and integrate over Ω,

it gives

0 = −
∫
Ω

αΦ∗
1 +

∫
Ω

β

[
C

d2
− d1
d2

Φ∗
1

]
,

and hence, C =
∫
Ω
(d2α+d1β)Φ

∗
1∫

Ω
β

. It now follows that
∫
Ω
m(Φ∗

1+Φ∗
2) = [1− d1

d2
]
∫
Ω
Φ∗

1m+ C
d2

∫
Ω
m. Therefore,

sign(λ′(0)) is the same as that of [1− d1

d2
]
∫
Ω
Φ∗

1m+ C
d2

∫
Ω
m.

Suppose that α(x) = kβ(x) for some constant k > 0. Then (Φ∗
1,Φ

∗
2) is constant, in fact we can choose

(Φ∗
1,Φ

∗
2) = c0(1, k), and as a consequence, Proposition 2.5 gives the following result.

Proposition 2.6. Assume that m changes sign and α(x) = kβ(x) for some constant k > 0. Then the

following statements are valid:

(i) If
∫
Ω
m > 0, then λ0 > 0.

(ii) If
∫
Ω
m < 0, then there exists a unique positive µ∗ > 0 such that sign(1− µ∗) = sign(λ0).
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(This is analogous to the case of a single equation.) Clearly, by Propositions 2.3(d) and 2.4, if, for

example,
∫
Ω
(m−α) < 0 and m−α changes sign, when d1 is small, λ0 > 0. This suggests we could study

the effects of diffusion rates on λ0 in a more direct way.

Consider the eigenvalue problem with d > 0 and µ > 0

LΦ := dLΦ+ µM(x)Φ = λΦ in Ω,
∂Φ

∂n
= 0 on ∂Ω, (2.7)

where Lϕ = (∆ 0
0 d0∆

)( ϕ1

ϕ2
) with ∂ϕi

∂n = 0, i = 1, 2, d0 > 0 is given and

M(x) =

(
m(x)− α(x) β(x)

α(x) m(x)− β(x)

)
.

We extend our notation to denote the principal eigenvalue of (2.7) as λ(d, µM). Note that if d0 = 1, the

problem (2.7) can be reduced to the classical scalar eigenvalue problem d∆Φ + µm(x)Φ = λΦ, in other

words, λ(d, µM) = λ(d, µm). Below we only focus on d0 > 1.

For each given x ∈ Ω̄, let s(M(x)) be the spectral bound of M(x), which is the largest real eigenvalue

due to the Perron-Frobenius theorem. Since λ1 = m(x) and λ2 = m(x) − α(x) − β(x) are the two real

eigenvalues of M(x), it easily follows that s(M(x)) = m(x).

Proposition 2.7. Assume that m changes sign and
∫
Ω
m < 0. Then when d = 1, there exist finitely

many values of µ > 0 such that λ(1, µM) = 0.

Proof. We first claim that when d = 1, there exists µ0(d0) > 0, such that λ(1, µ) > 0 for any µ > µ0.

Note that limd→0 λ(d,M) = maxx∈Ω̄ s(M(x)) = maxx∈Ω̄m(x) > 0 (see, e.g., [9, 27]; related results on

singularly perturbed competition systems are obtained in [29]). So there exists a small δ0 > 0 such

that λ(d,M) > 0 for d ∈ (0, δ0). Now let µ0 = 1
δ0

> 0. It follows from λ(1, µM) = µλ( 1µ ,M) that

λ(1, µM) > 0 for any µ > µ0.

Set k0 =
∫
Ω
α∫

Ω
β
> 0. Let f1(µ, ·) and f2(µ, ·) be the eigenfunctions associated with λ(1, µ(m−α+ k0β))

and λ(d0, µ(m − β + 1
k0
α)), such that f1(0, ·) = 1 and f2(0, ·) = k0. Note that for any D > 0, we have

λ(D, 0) = 0. As in the derivation of (2.5) in the proof of Proposition 2.5, the eigenvalues λ(1, µ(m−α+

k0β)) and λ(d0, µ(m − β + 1
k0
α)) are differentiable with respect to µ. Differentiating with respect to µ,

integrating over Ω, and letting µ→ 0, we obtain that

∂λ(D,µ(m− α+ k0β))

∂µ
(D, 0) =

∂λ(D,µ(m− β + 1
k0
α))

∂µ
(D, 0) =

1

|Ω|

∫
m := A < 0.

Our next goal is to show that if µ > 0 is sufficiently small, then there exists ϕ(µ) = (ϕ1, ϕ2) such that

Lϕ ≪ 0. If such a ϕ exists, it will be a positive super solution of Lϕ = 0 with L as in (2.7), which then

implies that λ(1, µM) < 0. (This follows from the characterization of the strong maximum principle in

[1, Theorem 13], which gives an extension of results of [30] to systems with general boundary conditions.

The key results of [1, 30] are that for cooperative systems such as (2.7), three things are equivalent:

the operator L has a strong maximum principle, the principal eigenvalue is negative, and there exists a

strictly positive supersolution.)

Denote βmax = maxx∈Ω̄ β(x) and αmax = maxx∈Ω̄ α(x). For any sufficiently small ϵ > 0 satisfying

(A+ ϵ)(1− ϵ)+ (k0 +1)βmaxϵ < 0 and (A+ ϵ)(k0 − ϵ)+ ( 1
k0

+1)αmaxϵ < 0, there exists µ0 > 0, such that

for any 0 < µ < µ0, we have

∥f1(µ, ·)− 1∥∞ < ϵ, ∥f2(µ, ·)− k0∥∞ < ϵ

and ∣∣∣∣λ(1, µ(m− α+ k0β))

µ
−A

∣∣∣∣ < ϵ,

∣∣∣∣λ(d0, µ(m− β + 1
k0
β))

µ
−A

∣∣∣∣ < ϵ.

Let ϕ(µ) = (f1(µ), f2(µ)). Then for 0 < µ < µ0, we have

∆f1 + µ(m− α+ k0β)f1 + µ(−k0βf1 + βf2)



448 Cantrell R S et al. Sci China Math March 2020 Vol. 63 No. 3

= µ

(
λ(1, µ(m− α+ k0β))

µ
f1 − k0βf1 + βf2

)
< µ[(A+ ϵ)(1− ϵ)− k0β(1− ϵ) + β(k0 + ϵ)]

6 µ[(A+ ϵ)(1− ϵ) + (k0 + 1)βmaxϵ] < 0

and

d0∆f2 + µ

(
m− β +

1

k0
α

)
f2 + µ

(
− α

k0
f2 + αf1

)
= µ

(
λ(d0, µ(m− β + α

k0
))

µ
f2 −

α

k0
f2 + αf1

)
< µ

[
(A+ ϵ)(k0 − ϵ)− α

k0
(k0 − ϵ) + α(1 + ϵ)

]
6 µ

[
(A+ ϵ)(k0 − ϵ) +

(
1

k0
+ 1

)
αmaxϵ

]
< 0.

So Lϕ ≪ 0, and hence, the characterization of the maximum principle in [1] implies that λ(1, µM) < 0

for any 0 < µ < µ0.

An alternative approach: Let Sµ(t) be the solution semigroup for Ut = LU + µM(x)U on X :=

C(Ω̄,R2). For every µ > 0, Sµ(t) is compact and strongly positive for t > 0, in view of the Krein-

Rutman theorem (see [21, Theorem 7.2] and [39, Theorem 7.6.1]), it follows that the spectral radius

r(Sµ(t)) = eλ(1,µM)t for any t > 0. Clearly, for any given 0 < µ < µ0, 1 · ϕ − Sµ(t)ϕ := h > 0 in X for

t > 0.

Now [21, Theorem 7.3] implies 1 > r(Sµ(t)) = eλ(1,µM)t for every t > 0, and hence, λ(1, µM) < 0.

As a consequence, we see that equation λ(1, µM) = 0 admits at least one positive root. Indeed,

the roots of λ(1, µM) = 0 are isolated due to the fact that λ is analytic in µ ∈ (0,∞) (see, e.g., [30,

Theorem 4.1] and [26]). Thus, there are a finite number of values of µ ∈ (0, µ0) such that λ(1, µM) = 0.

(We cannot give conditions that guarantee there is a unique value of µ, as in the scalar case, because the

key lemma derived for that purpose in [22] is not available for systems.)

Lemma 2.8. Assume that m changes sign. Let d0 = d2

d1
be fixed and d = d1 vary.

(a) If
∫
Ω
m < 0, then there exists 0 < C1 6 C2 dependent on d0 and M such that,

(i) if d < C1, then λ0 > 0;

(ii) if d > C2, then λ0 < 0;

(iii) there are a finite number of d ∈ [C1, C2], such that λ0 = 0.

(b) If
∫
Ω
m > 0, then λ0 > 0 provided d is either large or small.

Proof. Statement (a) is a direct consequence of Proposition 2.7. The proof of Statement (b) is similar

to that in Proposition 2.7. Indeed, we can construct ψ(µ) ≫ 0 such that Lψ ≫ 0 when µ is sufficiently

small. Moreover, (−ψ)− Sµ(t)(−ψ) =: h1 > 0 in X. Then [21, Theorem 7.3] again implies 1 < r(Sµ(t))

= eλ(1,µM)t, i.e., λ(1, µM) > 0 for µ sufficiently small.

Because we are unable to show that there is a unique root of λ(1, µM) = 0 in Proposition 2.7, a

sharper result for Statement (b) is not available that for arbitrary d > 0, λ0 > 0. However when d1 = d2,

the result is analogous to a scalar equation, and λ0 depends continuously on d1 and d2. Therefore, a

perturbation argument implies the following result.

Lemma 2.9. Assume that m changes sign. Let d = d1 be fixed and d0 = d2

d1
vary.

(a) If
∫
Ω
m < 0 and µ∗ is defined in Proposition 2.3, then there exists a small δ(d1) > 0, such that for

any d0 ∈ (1, 1 + δ),

(i) if d1 >
1
µ∗ , then λ0 < 0;

(ii) if d1 <
1
µ∗ , then λ0 > 0.

(b) If
∫
Ω
m > 0, there exists a small δ(d1) > 0, such that for any d0 ∈ (1, 1 + δ), λ0 > 0.
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Proof. (a) (i) When d0 = 1, there exists µ∗ > 0 such that λ0 = λ(d1, µm) < 0 if and only if d1 >
1
µ∗ .

Now for any given d1 >
1
µ∗ and d0 = 1, we have λ0 < 0. Since λ0 depends continuously on d0 > 0, there

exists some δ(d1) > 0, such that λ0 < 0 for any d0 ∈ (1, 1 + δ). Similarly, we can verify other cases.

Now we have the following practical persistence result in terms of λ0. Let X1 = C(Ω̄,R2) and X+
1 =

C(Ω̄,R2
+).

Theorem 2.10. Let u(t, x, ϕ) be the solution of (2.1) with u(0, ·, ϕ) = ϕ ∈ X+
1 .

(i) If λ0 6 0, then 0 is globally attractive for any ϕ ∈ X+
1 .

(ii) If λ0 > 0, then the system (2.1) admits at least one positive steady state (U∗, V ∗), and there exists

an η > 0 such that for any ϕ ∈ X+
1 \ {0}, we have

lim inf
t→∞

ui(t, x, ϕ) > η, ∀ i = 1, 2.

Proof. (i) It is easy to see that for any t > 0,

∂u1
∂t

6 d1∆u1 − α(x)u1 + β(x)u2 +m(x)u1,

∂u2
∂t

6 d2∆u2 + α(x)u1 − β(x)u2 +m(x)u2.

Therefore, for any ϕ ∈ X+
1 , there exists a number p > 0, such that ϕ 6 pψ where ψ is the positive

eigenfunction associated with λ0, and hence, the comparison principle (for the linearized system of (2.1))

implies u(t, ·, ϕ) 6 peλ0tψ for any t > 0. If λ0 < 0, let t → ∞. Then the statement (i) follows for that

case.

Suppose that λ0 = 0. It follows from the Krein-Rutman theorem that the adjoint of the operator on

the right-hand side of (2.3) has a principal eigenvalue equal to λ0 = 0 with a positive eigenfunction.

Let ψ∗ = (ψ∗
1 , ψ

∗
2) be a positive eigenfunction for the adjoint problem for (2.3). If we multiply the first

equation in (2.1) by ψ∗
1 and the second by ψ∗

2 and then integrate over Ω and add the resulting equations,

all the terms arising from the linear part of the right-hand side of (2.1) drop out and we obtain

d

dt

∫
Ω

(ψ∗
1u+ ψ∗

2v) = −
∫
Ω

[ψ∗
1u(u+ bv) + ψ∗

2v(cu+ v)]. (2.8)

Since ψ∗
1 and ψ∗

2 are positive and continuous on Ω̄, they are bounded above and below by positive

constants so that [ψ∗
1u(u + bv) + ψ∗

2v(cu + v)] > c0(ψ
∗
1u + ψ∗

2v)
2 for some positive constant c0. It then

follows from (2.8) and the Cauchy-Schwartz inequality that

d

dt

∫
Ω

(ψ∗
1u+ ψ∗

2v) 6 −c0
∫
Ω

(ψ∗
1u+ ψ∗

2v)
2 6 − c0

|Ω|

[ ∫
Ω

(ψ∗
1u+ ψ∗

2v)

]2
so that ∫

Ω

(ψ∗
1u+ ψ∗

2v) → 0 as t→ ∞. (2.9)

If (0, 0) is not globally attractive, then for some solution (u, v) of (2.1) there must exist a constant

ϵ > 0 and a sequence {tn} with tn → ∞ as n → ∞ such that ∥(u(tn), v(tn)∥X1 > ϵ. All solutions of

(2.1) in X+
1 are bounded by Proposition 2.1. Standard results on the parabolic regularity and Sobolev

embedding then imply that forward orbits are precompact in X1, so there must be a subsequence of

{(u(tn), v(tn))} that converges in X1. By re-indexing we can denote this subsequence as (u(tn), v(tn)),

and then (u(tn), v(tn)) → (u∗, v∗) for some (u∗, v∗) as n → ∞, with ∥(u(tn), v(tn))∥X1 > ϵ so that

(u∗, v∗) ̸= (0, 0). For all sufficiently large n we must have u(tn) > u∗/2 and v(tn) > v∗/2 so that∫
Ω

(ψ∗
1u(tn) + ψ∗

2v(tn)) >
1

2

∫
Ω

(ψ∗
1u ∗+ψ∗

2v∗) > 0.

Since tn → ∞ as n → ∞, this contradicts (2.9). To avoid a contradiction we must have (0, 0) globally

attractive.
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(ii) Since λ0 > 0, there exists small ϵ > 0 such that the perturbed eigenvalue problem

λϕ1 = d1∆ϕ1 − α(x)ϕ1 + β(x)ϕ2 + (m(x)− 2ϵ)ϕ1 in Ω,

λϕ2 = d2∆ϕ2 + α(x)ϕ1 − β(x)ϕ2 + (m(x)− 2ϵ)ϕ2 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

= 0 on ∂Ω

(2.10)

admits a positive principal eigenvalue λϵ0 with a positive eigenfunction ψϵ.

Let W := {ϕ ∈ X+
1 : ϕ ̸≡ 0} and ∂W := {ϕ ∈ X+

1 : ϕ ≡ 0}. Note that for any ϕ ∈ W, we have

the solution u(t, ·, ϕ) ≫ 0 for any t > 0. We now prove the zero is a uniform weak repeller for W in

the sense that there exists δ0 > 0 such that lim supt→∞ ∥u(t, ·, ϕ)∥X1 > δ0 for all ϕ ∈ W. Suppose, by

contradiction, that lim supt→∞ ∥u(t, ·, ϕ0)∥X1 < ϵ for some ϕ0 ∈ W. Then there exists t1 > 0 such that

u1(t, ·, ϕ0) < ϵ and u2(t, ·, ϕ0) < ϵ for any t > t1 satisfying

∂u

∂t
> d1∆u− α(x)u+ β(x)v + u(m(x)− 2ϵ),

∂v

∂t
> d2∆v + α(x)u− β(x)v + v(m(x)− 2ϵ).

Since u(t1, ·, ϕ0) is positive, there exists an a > 0 such that u(t1, ·, ϕ0) > aϕϵ. Then the comparison

principle implies that u(t, ·, ϕ0) > aeλ
ϵ(t−t1)ψϵ for any t > t1. It then follows that u(t, ·, ϕ0) is unbounded,

which is impossible.

The above argument shows that W s({0}) ∩W = ∅ and {0} is isolated in X+
1 , where W s({0}) is the

stable set of {0}. Define p(ϕ) = min16i62{minx∈Ω̄ ϕi(x)}. It is easy to see that p is a generalized distance

function for the semiflow: Qt : X+
1 → X+

1 . The dissipativity and precompactness of forward orbits

for (2.1) imply that the semi-dynamical system Qt(ϕ) := u(t, ·, ϕ) admits a compact global attractor

on W, and hence, it contains an equilibrium (U∗, V ∗) ∈ W. Moreover, it follows from [40, Theorem 3]

that there exists an η > 0 such that min{p(ψ) : ψ ∈ ω(ϕ)} > η for any ϕ ∈ W. Therefore, for any ϕ ∈ W,

we have

lim inf
t→∞

ui(t, x, ϕ) > η, ∀ i = 1, 2.

This completes the proof.

3 The system with small switching rates and positive m(x)

Throughout this section, we assume conditions in Proposition 2.2(1) hold and bc 6 1. Roughly speaking,

as long as positive β and α are very small, the requirements in Proposition 2.2(1) would be valid. We

consider the submodel

∂u

∂t
= d1∆u− αu+ βv + u(m(x)− u− bv) in (0,∞)× Ω,

∂v

∂t
= d2∆v + αu− βv + v(m(x)− cu− v) in (0,∞)× Ω,

∂u

∂n
=
∂v

∂n
= 0 on (0,∞)× ∂Ω,

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x) in Ω.

(3.1)

When α = β ≡ 0, this is the model studied in [19]. Since (0, 0) is unstable due to the fact m > 0 on Ω̄,

the existence of the positive steady state follows immediately from Theorem 2.10. By Proposition 2.2, we

can show that every solution with positive initial data will eventually lie in the region ( β̄b , m̄) × ( ᾱc , m̄),

where the system will be a competitive system. Thus we can apply ideas based on the theory of positive

operators and monotone semi-dynamical systems with respect to the competitive ordering.

Proposition 3.1. If a positive steady state (U, V ) of (3.1) exists, it must be asymptotically stable.
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Proof. The essential idea is motivated by [19]. Linearizing the steady state problem of (3.1) at (U, V ),

we have

λΦ1 = d1∆Φ1 + (m(x)− 2U − bV − α)Φ1 + (β − bU)Φ2 in Ω,

λΦ2 = d2∆Φ2 + (α− cV )Φ1 + (m(x)− cU − 2V − β)Φ2 in Ω,

∂Φ1

∂n
=
∂Φ2

∂n
= 0 on ∂Ω.

(3.2)

By the Krein-Rutman theorem and the fact that U(·) > β̄
b and V (·) > ᾱ

c , the eigenvalue problem admits

a principal eigenvalue λ1, with the corresponding eigenfunction satisfying Φ∗
1 > 0 > Φ∗

2 on Ω̄. By a

straightforward calculation, using the equations satisfied by U and Φ∗
1 (multiply U -equation by Φ∗

1 and

Φ∗
1-equation by U , and then do the subtraction) and the identity

(∆U)Φ∗
1 − U(∆Φ∗

1) = ∇ · [(∇U)Φ∗
1 − (∇Φ∗

1)U ],

we obtain that

− λ1Φ
∗
1U = −d1∇ ·

(
U2∇Φ∗

1

U

)
+ U2(Φ∗

1 + bΦ∗
2) + β(V Φ∗

1 − UΦ∗
2). (3.3)

Similarly, we have

−λ1Φ∗
2V = −d2∇ ·

(
V 2∇Φ∗

2

V

)
+ V 2(cΦ∗

1 +Φ∗
2) + α(UΦ∗

2 − V Φ∗
1).

Multiplying both sides of (3.3) by
Φ∗2

1

U2 and integrating over Ω, we see that

− λ1

∫
Ω

Φ∗3
1

U
= 2d1

∫
Ω

UΦ∗
1

∣∣∣∣∇Φ∗
1

U

∣∣∣∣2 + ∫
Ω

Φ∗2
1 (Φ∗

1 + bΦ∗
2) +

∫
Ω

β(V Φ∗
1 − UΦ∗

2)
Φ∗2

1

U2
. (3.4)

Likewise, we get

− λ1

∫
Ω

Φ∗3
2

V
= 2d2

∫
Ω

V Φ∗
2

∣∣∣∣∇Φ∗
2

V

∣∣∣∣2 + ∫
Ω

Φ∗2
2 (cΦ∗

1 +Φ∗
2) +

∫
Ω

α(UΦ∗
2 − V Φ∗

1)
Φ∗2

2

V 2
. (3.5)

Subtract (3.5) from the product of c3 and (3.4). Then together with the fact that bc 6 1 and Φ∗
2 < 0, we

obtain

−λ1
(
c3
∫
Ω

Φ∗3
1

U
−
∫
Ω

Φ∗3
2

V

)
> 2c3d1

∫
Ω

UΦ∗
1

∣∣∣∣∇Φ∗
1

U

∣∣∣∣2 − 2d2

∫
Ω

V Φ∗
2

∣∣∣∣∇Φ∗
2

V

∣∣∣∣2
+

∫
Ω

(cΦ∗
1 +Φ∗

2)
2(cΦ∗

1 − Φ∗
2)

+

∫
Ω

(V Φ∗
1 − UΦ∗

2)

(
c3β

Φ∗2
1

U2
+ α

Φ∗2
2

V 2

)
. (3.6)

It follows immediately from Φ∗
2 < 0 and V Φ∗

1 − UΦ∗
2 > 0 that the right-hand side of (3.6) is greater

than zero, and hence, λ1 < 0. Now it follows immediately from [39, Theorem 7.6.2] that linearly stable

(λ1 < 0) implies asymptotically stable.

The following result is a direct consequence of Theorem 2.10, Proposition 3.1 and monotone dynamical

systems approach (see, e.g., [21, Theorem 9.2]).

Theorem 3.2. If the conditions of Proposition 2.2(1) are satisfied and bc 6 1, then the system (3.1)

admits a unique positive steady state (U∗, V ∗), which is globally asymptotically stable in X+
1 \ {0}.
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4 The cooperative-cooperative-competition system

In this section, we consider one species having two different kinds of movements that competes with

another ecologically identical species having only one movement mode. Now consider the system

∂u

∂t
= d1∆u− αu+ βv + u(m(x)− u− v − w) in (0,∞)× Ω,

∂v

∂t
= d2∆v + αu− βv + v(m(x)− u− v − w) in (0,∞)× Ω,

∂w

∂t
= d3∆w + w(m(x)− u− v − w) in (0,∞)× Ω,

∂u

∂n
=
∂v

∂n
=
∂w

∂n
= 0 on (0,∞)× ∂Ω,

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x), w(0, x) = ϕ3(x) in Ω.

(4.1)

Here, d1 < d2, d3, α and β are positive numbers. Throughout this section, we impose the following

assumption.

(H) m is non-constant,
∫
Ω
m > 0 and 0 < maxΩ̄m(x) < α+ β.

By (H) and Proposition 2.2, one can show that the subsystem

∂u

∂t
= d1∆u− αu+ βv + u(m(x)− u− v) in (0,∞)× Ω,

∂v

∂t
= d2∆v + αu− βv + v(m(x)− u− v) in (0,∞)× Ω,

∂u

∂n
=
∂v

∂n
= 0 on (0,∞)× ∂Ω,

u(0, x) = ϕ1(x), v(0, x) = ϕ2(x) in Ω

(4.2)

is cooperative, irreducible and sub-homogeneous in a contracting rectangular region [0, β]× [0, α] which

attracts all positive trajectories. The approach of monotone dynamical systems, along with Proposi-

tion 2.6, implies the system (4.2) admits a globally attractively positive steady state (u∗, v∗) (see [6] for

related results in the constant coefficient case).

Because the dynamics of the first two components move the system (4.2) into a region where they satisfy

a cooperative system, we can treat the model (4.1) as a monotone system with respect to the ordering

(u1, v1, w1) > (u2, v2, w2) ⇔ u1 > u2, v1 > v2, w1 6 w2. Systems of ordinary differential equations with

this type of order structure are treated in [37] (see also the discussion of alternate cones in [38]). The

ideas extend directly to reaction-diffusion systems via the maximum principle.

Also, the classic result on logistic-type reaction-diffusion equations shows that

∂w

∂t
= d3∆w + w(m(x)− w) in (0,∞)× Ω,

∂w

∂n
= 0 on (0,∞)× ∂Ω,

w(0, x) = ϕ(x) in Ω

(4.3)

admits a globally attractively positive steady state w∗(·).
The following observation is based on the strong maximum principle.

Proposition 4.1. Assume that (H) holds. Then the nontrivial nonnegative steady states of the

system (4.1) are (u∗, v∗, 0), (0, 0, w∗) plus any positive steady states that exist.

Next, we investigate the effects of diffusion rate d3 on the local stability of (u∗, v∗, 0) and (0, 0, w∗),

i.e., we fix the other parameters and let d3 vary.

Lemma 4.2. There exists dc ∈ (d1,
β

α+βd1 + α
α+βd2), such that (u∗, v∗, 0) is linearly unstable when

d3 < dc and (u∗, v∗, 0) is linearly stable when d3 > dc.
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Proof. To investigate the local stability of (u∗, v∗, 0), we consider the eigenvalue problem

λϕ1 = d1∆ϕ1 + (m(x)− 2u∗ − v∗ − α)ϕ1 + (β − u∗)ϕ2 − u∗ϕ3 in Ω,

λϕ2 = d2∆ϕ2 + (α− v∗)ϕ1 + (m(x)− u∗ − 2v∗ − β)ϕ2 − v∗ϕ3 in Ω,

λϕ3 = d3∆ϕ3 + (m(x)− u∗ − v∗)ϕ3 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

=
∂ϕ3
∂n

= 0 on ∂Ω.

(4.4)

In view of Proposition 2.2(2), we have u∗ < β and v∗ < α, so this eigenvalue problem admits a principal

eigenvalue which exactly is λ(d3,m − u∗ − v∗) defined in Proposition 2.3. Since m is non-constant, it

follows that (u∗, v∗) is a non-constant steady state (i.e., u∗ and v∗ are not both constant). Moreover,

m− u∗ − v∗ is also non-constant. Otherwise, suppose m− u∗ − v∗ ≡ K. Then adding the equations for

the equilibria of (4.2) together and integrating, we get K
∫
Ω
[u∗ + v∗] = 0, and hence, K = 0. It follows

that 0 is the principal eigenvalue of

λϕ1 = d1∆ϕ1 − αϕ1 + βϕ2 in Ω,

λϕ1 = d2∆ϕ2 + αϕ1 − βϕ2 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

= 0 on ∂Ω

associated with the positive eigenfunction (u∗, v∗). Note that (β, α) is another positive eigenfunction

associated with the principal eigenvalue 0, and hence, (u∗, v∗)T ∈ Span{(β, α)T}, which is impossible.

Observe that (u∗, v∗, 0) is independent of d3. Then λ(d3,m − u∗ − v∗) is continuous and strictly

decreasing in d3, i.e., it changes sign at most once.

Claim 1. λ(d3,m− u∗ − v∗) > 0 when d3 = d1.

Suppose by contradiction, λ(d1,m − u∗ − v∗) 6 0. Note that the non-constant steady state (u∗, v∗)

satisfies
0 = d1∆u

∗ − αu∗ + βv∗ + u∗(m(x)− u∗ − v∗) in Ω,

0 = d2∆v
∗ + αu∗ − βv∗ + v∗(m(x)− u∗ − v∗) in Ω,

∂u∗

∂n
=
∂v∗

∂n
= 0 on ∂Ω.

(4.5)

Multiplying the first and second equations by αu∗ and βv∗, respectively, and then integrating over Ω and

adding together, we see that

α

[
− d1

∫
Ω

|∇u∗|2 +
∫
Ω

(m− u∗ − v∗)u∗2
]
+ β

[
− d2

∫
Ω

|∇v∗|2 +
∫
Ω

(m− u∗ − v∗)v∗2
]

=

∫
Ω

(αu∗ − βv∗)2 > 0. (4.6)

Since d1 < d2, λ(d2,m
∗ − u∗ − v∗) < λ(d1,m

∗ − u∗ − v∗) 6 0, and it follows from the variational formula

for the principal eigenvalue λ(d,m) that −d1
∫
Ω
|∇u∗|2 +

∫
Ω
(m − u∗ − v∗)u∗2 6 0 and −d2

∫
Ω
|∇v∗|2

+
∫
Ω
(m− u∗ − v∗)v∗2 < 0, in contradiction to (4.6).

Claim 2. λ(d3,m
∗ − u∗ − v∗) < 0 when d3 = β

α+βd1 +
α

α+βd2.

By way of contradiction, assume that λ(d03,m − u∗ − v∗) > 0 where d03 = β
α+β d1 +

α
α+βd2. Let ϕ∗ be

the positive eigenfunction associated with λ(d03,m− u∗ − v∗); clearly, it is non-constant.

Let

L

(
ϕ1

ϕ2

)
=

(
αd1∆ϕ1 + [(m− u∗ − v∗)α− α2]ϕ1 + αβϕ2

βd2∆ϕ2 + αβϕ1 + [(m− u∗ − v∗)β − β2]ϕ2

)
.

Then L is a self-adjoint operator. The principal eigenvalue of L is 0 with (u∗, v∗) being the associated

eigenfunction, and we have the variational formula for the principal eigenvalue of L:

0 = λ(L) = sup
(ϕ1,ϕ2)∈H1(Ω,R2)\{0}

{
α[−d1

∫
Ω
|∇ϕ1|2 +

∫
Ω
(m− u∗ − v∗)ϕ21]∫

Ω
(ϕ21 + ϕ22)
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+
β[−d2

∫
Ω
|∇ϕ2|2 +

∫
Ω
(m− u∗ − v∗)ϕ22]∫

Ω
(ϕ21 + ϕ22)

−
∫
Ω
(αϕ1 − βϕ2)

2∫
Ω
(ϕ21 + ϕ22)

}
.

Choose test functions ϕ1 = ϕ∗

α and ϕ2 = ϕ∗

β . It then follows that

−d1
∫
Ω
|∇ϕ∗|2 +

∫
Ω
(m− u∗ − v∗)ϕ∗2

α
+

−d2
∫
Ω
|∇ϕ∗|2 +

∫
Ω
(m− u∗ − v∗)ϕ∗2

β
< 0. (4.7)

The above strict inequality is due to the fact that αu∗−βv∗ is not identically to zero and hence (ϕ1, ϕ2) ̸=
(u∗, v∗). (If αu∗−βv∗ ≡ 0, it then follows that λ(d1,m−u∗− v∗) = λ(d2,m−u∗− v∗) = 0 with d1 < d2,

which leads to a contradiction.)

Since we assumed −d03
∫
Ω
|∇ϕ∗|2 +

∫
Ω
(m− u∗ − v∗)ϕ∗2 > 0, we have(

d03 − d1
α

+
d03 − d2
β

)∫
Ω

|∇ϕ∗|2

6
−d1

∫
Ω
|∇ϕ∗|2 +

∫
Ω
(m− u∗ − v∗)ϕ∗2

α
+

−d2
∫
Ω
|∇ϕ∗|2 +

∫
Ω
(m− u∗ − v∗)ϕ∗2

β
< 0. (4.8)

This implies d03 <
β

α+βd1 +
α

α+βd2, which leads to a contradiction.

From the above discussion, we see that given d1, d2, α, β, there exists a unique dc ∈ (d1,
β

α+βd1+
α

α+βd2),

such that λ(dc,m− u∗ − v∗) = 0. When d3 < dc, (u
∗, v∗, 0) is linearly unstable, while d3 > dc, (u

∗, v∗, 0)

is linearly stable.

Likewise, we check the local stability of (0, 0, w∗). The associated eigenvalue problem is

λϕ1 = d1∆ϕ1 + (m(x)− w∗ − α)ϕ1 + βϕ2 in Ω,

λϕ2 = d2∆ϕ2 + αϕ1 + (m(x)− β − w∗)ϕ2 in Ω,

λϕ3 = d3∆ϕ3 − w∗ϕ1 − w∗ϕ2 + (m(x)− 2w∗)ϕ3 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

=
∂ϕ3
∂n

= 0 on ∂Ω.

(4.9)

The principal eigenvalue λ2 of (4.9) is determined by the sub-eigenvalue problem

λϕ1 = d1∆ϕ1 + (m(x)− w∗ − α)ϕ1 + βϕ2 in Ω,

λϕ2 = d2∆ϕ2 + αϕ1 + (m(x)− β − w∗)ϕ2 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

= 0 on ∂Ω.

(4.10)

This eigenvalue problem is equivalent to the weighted eigenvalue problem

λαϕ1 = d1α∆ϕ1 + (m(x)− w∗ − α)αϕ1 + αβϕ2 in Ω,

λβϕ2 = d2β∆ϕ2 + αβϕ1 + (m(x)− β − w∗)βϕ2 in Ω,

∂ϕ1
∂n

=
∂ϕ2
∂n

= 0 on ∂Ω.

(4.11)

The eigenvalue problem (4.11) is self-adjoint, so it admits a variational characterization, from which it

is easy to see that λ2 depends continuously on w∗. General properties of solutions to diffusive logistic

equations imply that w∗ depends smoothly on d3 > 0 (see, for example, [4]). This implies λ2 depends

continuously on d3 > 0. Now we have the following result.

Lemma 4.3. Assume that (H) holds. If d3 6 d1, then λ2(d3) < 0, i.e., (0, 0, w∗) is linearly stable.

If d3 > β
α+βd1 + α

α+βd2, then λ2(d3) > 0, i.e., (0, 0, w∗) is linearly unstable. Moreover, there exists

d0 ∈ (d1,
β

α+βd1 +
α

α+βd2), such that λ2(d0) = 0.
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Proof. Let (ϕ1, ϕ2) be the positive eigenfunction associated with λ2. Then multiplying the first and

second equations of (4.10) by αϕ1 and βϕ2, respectively, and then integrating over Ω, we see that

α

[
− d1

∫
Ω

|∇ϕ1|2 +
∫
Ω

(m− w∗)ϕ21

]
+ β

[
− d2

∫
Ω

|∇ϕ2|2 +
∫
Ω

(m− w∗)ϕ22

]
=

∫
Ω

(αϕ1 − βϕ2)
2 + λ2

∫
Ω

(αϕ21 + βϕ22). (4.12)

In the case where d3 6 d1, we claim that λ2 < 0. Otherwise, there exists some d̃3 6 d1 such that

λ2 > 0. It then follows from (4.12) that for w∗ = w∗(d̃3),

α

[
− d1

∫
Ω

|∇ϕ1|2 +
∫
Ω

(m− w∗)ϕ21

]
+ β

[
− d2

∫
Ω

|∇ϕ2|2 +
∫
Ω

(m− w∗)ϕ22

]
> 0.

However, the fact λ(d̃3,m− w∗) = 0 and d̃3 6 d1 < d2 implies that λ(d2,m− w∗) < λ(d1,m− w∗) 6 0,

and hence −d1
∫
Ω
|∇ϕ1|2 +

∫
Ω
(m− w∗)ϕ21 6 0 and −d2

∫
Ω
|∇ϕ2|2 +

∫
Ω
(m− w∗)ϕ22 < 0, which leads to a

contradiction.

Suppose there exists some d3 > β
α+βd1 + α

α+β d2 such that λ2 6 0. Adapting the previous analysis

to (4.10) by writing down the variational formula arising from (4.11), we have

0 > λ2 = sup
(ϕ1,ϕ2)∈H1(Ω,R2)\{0}

{
α[−d1

∫
Ω
|∇ϕ1|2 +

∫
Ω
(m− w∗)ϕ21]∫

Ω
(αϕ21 + βϕ22)

+
β[−d2

∫
Ω
|∇ϕ2|2 +

∫
Ω
(m− w∗)ϕ22]∫

Ω
(αϕ21 + βϕ22)

−
∫
Ω
(αϕ1 − βϕ2)

2∫
Ω
(αϕ21 + βϕ22)

}
.

Choose test functions ϕ1 = w∗

α and ϕ2 = w∗

β . If (w
∗

α ,
w∗

β ) were an eigenfunction for (4.11), we could

substitute into the two equations in (4.11) and subtract to see that w∗ would satisfy (d2 − d1)∆w
∗ = 0

with Neumann boundary conditions and hence would be constant, but w∗ cannot be constant, so (w
∗

α ,
w∗

β )

cannot be an eigenfunction for (4.11). Thus it follows that

−d1
∫
Ω
|∇w∗|2 +

∫
Ω
(m− w∗)w∗2

α
+

−d2
∫
Ω
|∇w∗|2 +

∫
Ω
(m− w∗)w∗2

β
< 0.

Since −d3
∫
Ω
|∇w∗|2 +

∫
Ω
(m− w∗)w∗2 = 0, we have(

d3 − d1
α

+
d3 − d2
β

)∫
Ω

|∇w∗|2

6
−d1

∫
Ω
|∇w∗|2 +

∫
Ω
(m− w∗)w∗2

α
+

−d2
∫
Ω
|∇w∗|2 +

∫
Ω
(m− w∗)ϕ∗2

β
< 0. (4.13)

This implies d3 <
β

α+βd1 +
α

α+βd2, which leads to a contradiction.

Since λ2 depends continuously on d0, there exists some d0 ∈ (d1,
β

α+βd1 + α
α+β d2) such that

λ2(d0) = 0.

Remark 4.4. Here, we are unable to show that there exists a unique d3 > 0 such that λ2(d3) = 0.

Next, we make an observation on the nonexistence of positive steady states of (4.1).

Lemma 4.5. There exists a sufficiently small ϵ > 0 such that the system (4.1) admits no positive

steady state (i.e., no coexistence state) when d3 ∈ (0, d1 + ϵ) ∪ ( β
α+βd1 +

α
α+βd2 − ϵ,∞).

Proof. First, we prove that when d3 6 d1 and d3 > β
α+βd1 +

α
α+βd2, there is no positive steady state.

The essential idea is similar to those in Lemmas 3.2 and 3.3. Suppose that, by contradiction, (u0, v0, w0)

is a positive steady state of (4.1). Then

0 = d1∆u0 − αu0 + βv0 + u0(m(x)− u0 − v0 − w0) in Ω,

0 = d2∆v0 + αu0 − βv0 + v0(m(x)− u0 − v0 − w0) in Ω,

0 = d3∆w0 + w0(m(x)− u0 − v0 − w0) in Ω,

∂u0
∂n

=
∂v0
∂n

=
∂w0

∂n
= 0 on ∂Ω.

(4.14)
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Note that m − u0 − w0 − w0 is non-constant. Otherwise, as before, we can show u0 and v0 have to be

constant. This implies m is constant, impossible.

Consider the case where d3 6 d1 < d2. Multiplying the first and second equations by αu0 and βv0,

respectively, and then integrating over Ω, we see that

α

[
− d1

∫
Ω

|∇u0|2 +
∫
Ω

(m− u0 − v0 − w0)u
2
0

]
+ β

[
− d2

∫
Ω

|∇v0|2 +
∫
Ω

(m− u0 − v0 − w0)v
2
0

]
=

∫
Ω

(αu0 − βv0)
2 > 0. (4.15)

Since 0 = λ(d3,m−u0−v0−w0) > λ(d1,m−u0−v0−w0) > λ(d2,m−u0−v0−w0), the variational formula

of the principal eigenvalue implies that −d1
∫
Ω
|∇u0|2 +

∫
Ω
(m − u0 − v0 − w0)u

2
0 6 0 and −d2

∫
Ω
|∇v0|2

+
∫
Ω
(m− u0 − v0 − w0)v

2
0 < 0, which leads to a contradiction.

In the case where d3 > β
α+β d1 +

α
α+βd2, let

L

(
ϕ1

ϕ2

)
=

(
αd1∆ϕ1 + [(m− u0 − v0 − w0)α− α2]ϕ1 + αβϕ2

βd2∆ϕ2 + αβϕ1 + [(m− u0 − v0 − w0)β − β2]ϕ2

)
.

Then L is a self-adjoint operator. The principal eigenvalue of L is 0, and we have the variational formula

for the principal eigenvalue of L:

λ(L) = sup
(ϕ1,ϕ2)H1(Ω,R2)\{0}

{
α[−d1

∫
Ω
|∇ϕ1|2 +

∫
Ω
(m− u0 − v0 − w0)ϕ

2
1]∫

Ω
(ϕ21 + ϕ22)

+
β[−d2

∫
Ω
|∇ϕ2|2 +

∫
Ω
(m− u0 − v0 − w0)ϕ

2
2]∫

Ω
(ϕ21 + ϕ22)

−
∫
Ω
(αϕ1 − βϕ2)

2∫
Ω
(ϕ21 + ϕ22)

}
.

Now let ϕ1 = w0

α and ϕ2 = w0

β . It follows that

−d1
∫
Ω
|∇w0|2 +

∫
Ω
(m−u0 − v0 − w0)w

2
0

α
+

−d2
∫
Ω
|∇w0|2 +

∫
Ω
(m− u0 − v0 − w0)w

2
0

β

is negative. Since −d3
∫
Ω
|∇w0|2+

∫
Ω
(m−u0− v0−w0)w

2
0 = 0, it follows that (d3−d1

α + d3−d2

β )
∫
Ω
|∇w0|2

< 0. This yields that d3 <
β

α+βd1 +
α

α+βd2, which leads to a contradiction.

Motivated by [5], now we suppose that when d3 → d+1 , there exists a sequence of positive steady states,

denoted by (ud3 , vd3 , wd3). By standard elliptic estimates, passing to a subsequence if necessary, we may

assume that (ud3 , vd3 , wd3) → (u0, v0, w0) in C
2(Ω̄) as d3 → d+1 satisfying

0 = d1∆u0 − αu0 + βv0 + u0(m(x)− u0 − v0 − w0) in Ω,

0 = d2∆v0 + αu0 − βv0 + v0(m(x)− u0 − v0 − w0) in Ω,

0 = d1∆w0 + w0(m(x)− u0 − v0 − w0) in Ω,

∂u0
∂n

=
∂v0
∂n

=
∂w0

∂n
= 0 on ∂Ω.

(4.16)

It follows immediately from the previous analysis that when d3 = d1 the non-negative steady state

(u0, v0, w0) cannot be component-wise positive.

Suppose that (u0, v0, w0) ≡ (0, 0, 0) and let

(ûd3 , v̂d3 , ŵd3) =

(
ud3

∥ud3∥L∞ + ∥vd3∥L∞
,

vd3

∥ud3∥L∞ + ∥vd3∥L∞
,

wd3

∥wd3∥L∞

)
.

Divide the first two equations and the third equation of (4.16) by ∥ud3∥L∞ + ∥vd3∥L∞ and ∥wd3∥L∞ ,

respectively. Then using the elliptic estimates again, we may assume that (ûd3 , v̂d3 , ŵd3) → (û0, v̂0, ŵ0)
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in C2(Ω̄) as d3 → d+1 satisfying

0 = d1∆û0 + û0(m(x)− α) + βv̂0 in Ω,

0 = d2∆v̂0 + αû0 + v̂0(m(x)− β) in Ω,

0 = d1∆ŵ0 + ŵ0m(x) in Ω,

∂û0
∂n

=
∂v̂0
∂n

=
∂ŵ0

∂n
= 0 on ∂Ω.

(4.17)

The third equation in (4.17) implies that either
∫
m < 0 or ŵ0 ≡ 0, which contradicts (H) or

∥ŵ0∥L∞ = 1. Thus (u0, v0, w0) cannot be compnentwise-positive or have all components zero. Now

if non-zero (u0, v0, w0) has at least one component that is identically to zero, then (u0, v0, w0) must be

either (u∗, v∗, 0) or (0, 0, w∗
d1
) in view of Proposition 4.1.

If the former case occurs, we have 0 = d1∆ŵ0 + ŵ0(m(x)− u∗ − v∗) with the zero Neumann boundary

condition, where ŵ0 is the limit of ŵd3 = wd3

∥wd3∥L∞
as d3 → d+1 . Since ∥ŵ0∥L∞ = 1, we see from the

strong maximum principle (looking at wt = d1∆ŵ0 + ŵ0(m(x)− u∗ − v∗)) that ŵ0 > 0 in Ω̄, and hence,

λ(d1,m− u∗ − v∗) = 0, which contradicts Lemma 4.2.

Likewise, if the latter case occurs, we have

0 = d1∆û0 − αû0 + βv̂0 + û0(m(x)− w∗
d1
) in Ω,

0 = d2∆v̂0 + αû0 − βv̂0 + v̂0(m(x)− w∗
d1
) in Ω,

∂û0
∂n

=
∂v̂0
∂n

= 0 on ∂Ω.

(4.18)

Now ∥û0∥L∞ + ∥v̂0∥L∞ = 1 and û0 > 0, v̂0 > 0. Then û0 > 0 and v̂0 > 0 on Ω̄ due to the maximum

principle. This implies that λ2 = 0 in (4.9) if d3 = d1, which contradicts Lemma 4.3.

We can use a similar indirect argument to prove that when d3 → d− where d = β
α+βd1 + α

α+βd2,

there is no positive steady state. For simplicity, we use the exact notation as before. Following the

same process, we show that the non-zero limiting steady state (u0, v0, w0) must be either (u∗, v∗, 0) or

(0, 0, w∗
d). If the former case happens, it gives λ(d,m − u∗ − v∗) = 0 < λ(dc,m − u∗ − v∗) = 0, which

leads to a contradiction. If the latter case happens, it implies λ2 = 0 when d3 = d, which also leads to a

contradiction.

Based on the above discussion, the result follows.

We can combine the results on the stability or instability of semi-trivial steady states with monotone

dynamical systems theory to obtain some results on the dynamics of (4.1). Let X1 = C(Ω̄,R), X2 =

C(Ω̄,R2), X+
1 = C(Ω̄,R2

+) and X+
2 = C(Ω̄,R2

+). As noted previously, (4.1) generates a monotone

semi-flow on X1 ×X2 with respect to the cooperative cooperative-competitive ordering.

Theorem 4.6. Assume that (H) holds. Then there exist d1 < C1 6 C2 <
β

α+βd1 +
α

α+βd2 such that

the following statements are valid for the system (4.1):

(i) (0, 0, w∗) is globally asymptotically stable in X+
1 × (X+

2 \ {0}) when d3 ∈ (0, C1).

(ii) (u∗, v∗, 0) is globally asymptotically stable in (X+
1 \ {0})×X+

2 when d3 ∈ (C2,∞).

Sketch of proof. We utilize the theory developed in [24] for abstract competitive systems (see also [23])

to prove the global stability of one of the boundary steady states. Set X = X1 ×X2, K = X+
1 × (−X+

2 )

and IntK = IntX+
1 × (−IntX+

2 ). Then K generates the partial order relations 6K , <K , ≪K on X. To

prove (i) or (ii), we might set E0 = (0, 0), E1 = (0, w∗), E2 = (û, 0) with û = (u∗, v∗).

Clearly, [24, (H1)–(H4)] are valid (see also [28]). Lemmas 4.2, 4.3 and 4.5, together with [24,

Theorem B], imply (i) or (ii) is valid when d3 ∈ (0, d1 + ϵ) or d3 ∈ ( β
α+βd1 + α

α+β d2 − ϵ,∞). Now

define

C1 := sup{d : there is no-coexistence steady state for d3 ∈ (0, d)}
and

C2 := inf{d : there is no-coexistence steady state for d3 ∈ (d,∞)}.
Then it easily follows that d1 < C1 6 d03 6 C2 <

β
α+βd1 +

α
α+βd2.
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Remark 4.7. We expect that there are conditions under which the system (4.1) has a coexistence

state but we will not pursue that point here.

5 Effects of switching rates on the dynamics

Throughout this section, we assume that hypothesis (H) holds, so the results of Section 3 apply. When

d3 6 d1 or d3 > d2, the species having slower diffusion also wins the competition. In order to study the

effects of switching rate on the competition we only focus on the case when d1 < d3 < d2.

Lemma 5.1. Assume that d1 < d3 < d2 and maxx∈Ω̄m(x) 6 α. Then the following statements are

valid:

(i) There exists a unique βc ∈ (0, d2−d3

d3−d1
α), such that (0, 0, w∗) is linearly stable when β ∈ (0, βc), and

linearly unstable when β ∈ (βc,∞).

(ii) (u∗, v∗, 0) is linearly unstable if β is small enough, and linearly stable if β ∈ [d2−d3

d3−d1
α,∞).

(iii) There exists small ϵ > 0, such that the system (4.1) admits no positive steady state when β ∈
(0, ϵ) ∪ (d2−d3

d3−d1
α− ϵ,∞).

Proof. For the statement (i), it suffices to check the principal eigenvalue λ2 of (4.9) (equivalently (4.10)

or (4.11)) in terms of β. We prove that λ2 is continuously differentiable on β > 0 by the implicit function

theorem. Let E = C2+ν(Ω̄,R) × C2+ν(Ω̄,R) × R and F = Cν(Ω̄,R) × Cν(Ω̄,R) × R, 0 < ν < 1, and

consider a mapping Φ : E × (0,∞) → F given by

Φ(v1, v2, s, β) =


d1∆v1 + (m− w∗ − α)v1 + βv2 − sv1

d2∆v2 + (m− w∗ − β)v2 + αv1 − sv2∫
Ω
(v21 + v22)− 1

 .

Note that Φ is a continuous map and that the linearization of Φ with respect to E at (v1, v2, s, β), denoted

D1Φ(v1, v2, s, β) : E → F , is given by

[D1Φ(v1, v2, s, β)](w1, w2, t) =


d1∆w1 + (m− w∗ − α)w1 + βw2 − sw1 − tv1

d2∆w2 + (m− w∗ − β)w2 + αw1 − sw2 − tv2

2
∫
Ω
(v1w1 + v2w2)

 .

Let (v10, v20) = (ϕ1(β0), ϕ2(β0)) and s0 = λ2(β0). Here, (ϕ1(β0), ϕ2(β0)) is the positive eigenfunction

corresponding to λ2(β0) with
∫
Ω
[ϕ1(β0)]

2 + [ϕ2(β0)]
2 = 1. Our next goal is to show that D1Φ(v1, v2, s, β)

is a bijection.

Suppose then that D1Φ(v10, v20, λ2(β0), β0)(w1, w2, t) = (0, 0, 0). Then

d1∆w1 + (m− w∗ − α− λ2(β0))w1 + β0w2 = tv10, d2∆w2 + (m− w∗ − β0 − λ2(β0))w2 + αw1 = tv20

with the zero Neumann boundary condition, and
∫
Ω
w1v10 + w2v20 = 0.

Direct calculations similar to those in Proposition 3.1 indicate that

d1∇ · (v10∇w10 − w10∇v10) + β0(w2v10 − v20w1) = tv210,

d2∇ · (v20∇w20 − w20∇v20) + α(w1v20 − v10w2) = tv220, (5.1)

∂w1

∂n
=
∂w2

∂n
= 0.

Multiply the equations of (5.1) by α and β0, respectively, then integrate over Ω, and lastly add together.

It then follows that 0 = t[
∫
Ω
(αv210 + β0v

2
20)], and hence, t = 0. Since λ2(β0) is the principal eigenvalue

of (4.10), we see from the algebraic simplicity of λ2(β0) that (w10, w20) ∈ Span {(v10, v20)}. Let w10

v10
=

w20

v20
= c. Then the fact

∫
Ω
(w1v10 + w2v20) = 0 implies c = 0, and hence, w10 = w20 = 0.

Let (h1, h2, r) ∈ F . Then consider equations

d1∆w1 + (m− w∗ − α− λ2(β0))w1 + β0w2 − tv10 = h1,
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d2∆w2 + (m− w∗ − β0 − λ2(β0))w2 + αw1 − tv20 = h2, (5.2)

2

∫
Ω

(w1v10 + w2v20) = r,
∂wi

∂n
= 0, i = 1, 2.

For simplicity, we use the inner product ⟨ϕ, ψ⟩ =
∫
Ω
ϕTψ. Denote w = (w1, w2)

T and v0 = (v10, v20)
T.

Then solving (5.2) is equivalent to solving the inhomogeneous equation Lw = G with the zero Neumann

condition and the constraint 2⟨w, v0⟩ = r, where the self-adjoint operator L : C2+ν(Ω̄,R)2 → Cν(Ω̄,R)2

is given by

L

(
ϕ1

ϕ2

)
=

(
αd1∆ϕ1 + α[m− w∗ − α− λ2(β0)]ϕ1 + αβ0ϕ2

β0d2∆ϕ2 + αβ0ϕ1 + β0[m− w∗ − β0 − λ2(β0)]ϕ2

)
,

and G is given by

G =

(
αtv10 + αh1

β0tv20 + β0h2

)
.

Since the solution set of the homogeneous equation Lw = 0 is Span{v0}, the solvability criterion for

Lw = G is

⟨G, v0⟩ = ⟨Lw, v0⟩ = ⟨w,Lv0⟩ = 0.

A simple calculation shows that t = −
∫
Ω
(αv10h1+β0v20h2)∫
Ω
(αv2

10+β0v2
20)

. Moreover, solutions of Lw = G with the zero

Neumann boundary conditions can be written in the form z+kv0, where k is an arbitrary constant and z

is uniquely determined by the requirement ⟨z, v0⟩ = 0. Now choose k = r
2 . Then w = z + kv0 is a

solution of (5.2). It then follows from the implicit function theorem that λ2(β) and (ϕ1(β), ϕ2(β)) are

continuously differentiable in β.

Taking the derivative with respect to β in (4.10) (or equivalently in Lϕ = 0), we obtain a system

equivalent to Lϕ̃ = f with ϕ̃ = (ϕ′1(β), ϕ
′
2(β))

T, and f = (λ′2(β)αϕ1 − αϕ2, λ
′
2(β)βϕ2 + βϕ2)

T. A simple

computation shows that

0 = ⟨Lϕ, ϕ̃⟩ = ⟨ϕ,Lϕ̃⟩ = ⟨ϕ, f⟩,

i.e., λ′2(β) =
∫
Ω
(αϕ1ϕ2−βϕ2

2)∫
Ω
(αϕ2

1+βϕ2
2)

. Since λ(d2,m − w∗) < λ(d3,m − w∗) = 0, we see from the second equation

of (4.10) that

λ2(β)

∫
Ω

ϕ22 −
∫
Ω

(αϕ1ϕ2 − βϕ22) = −d2
∫
Ω

|∇ϕ2|2 +
∫
Ω

(m− w∗)ϕ22 < 0.

This shows if λ2(β) > 0, then λ′2(β) > 0. Moreover, λ2(β) changes sign at most once.

By essentially the same argument as in Lemma 4.3, we obtain that when β > d2−d3

d3−d1
α, λ2(β) > 0.

Suppose that λ2(β) does not change sign. Then λ2(β) is bounded from below by zero, and there exists

βn > 0 and (ϕ1n, ϕ2n) with
∫
Ω
(ϕ21n + ϕ22n) = 1 such that λ2(βn) → A > 0 as βn → 0. One may use the

elliptic regularity to assume that (ϕ1n, ϕ2n) → (ϕ̂1, ϕ̂2) in C
2(Ω̄) satisfying

Aϕ̂1 = d1∆ϕ̂1 + (m(x)− w∗ − α)ϕ̂1 in Ω,

Aϕ̂2 = d2∆ϕ̂2 + αϕ̂1 + (m(x)− w∗)ϕ̂2 in Ω,

∂ϕ̂1
∂n

=
∂ϕ̂2
∂n

= 0 on ∂Ω.

(5.3)

Since ϕ̂i > 0, i = 1, 2, and
∫
Ω
(ϕ̂21 + ϕ̂22) = 1, A is either λ(d1,m − w∗ − α) < λ(d1,m − α) 6 0 or

λ(d2,m − w∗) < λ(d3,m − w∗) = 0, and hence, A < 0, which leads to a contradiction. Statement (i)

holds true.

For the statement (ii), we claim there exists some ϵ > 0 such that λ(d3,m − u∗(β) − v∗(β)) > 0 if

β ∈ (0, ϵ). If it is not true, then there exists βn → 0(n → ∞), λ(d3,m − u∗n − v∗n) 6 0 and (u∗n, v
∗
n)

∈ (0, βn)× (0, α). Since λ(d3,m− u∗n − v∗n) depends continuously on m− u∗n − v∗n, we might assume that

(up to a subsequence if necessary) (u∗n, v
∗
n) → (0, v∗∞) in C2(Ω̄) satisfying d2∆v

∗
∞ + (m− v∗)v∗∞ = 0 and
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λ(d3,m − v∗n − u∗n) → λ(d3,m − v∗∞) 6 0. If v∗∞ ≡ 0, then λ(d3,m) > 0 due to the assumption (H),

which leads to a contradiction. Otherwise, v∗∞ is positive, m− v∗∞ is non-constant and λ(d2,m− v∗∞) = 0

< λ(d3,m− v∗∞), which leads to a contradiction again.

In the case that β > d2−d3

d3−d1
α, it follows directly from Lemma 4.2 that λ(d3,m − u∗ − v∗) < 0, i.e.,

(u∗, v∗, 0) is linearly stable.

For the statement (iii), we show that when β → 0+, there is no coexistence steady state. If not, then

there exists βn → 0 (n→ ∞), positive steady states (u0n, v
0
n, w

0
n) and (u0n, v

0
n) ∈ (0, βn)× (0, α). Passing

to the limit, we might assume that (up to a subsequence if necessary) (u0n, v
0
n, w

0
n) → (0, v0∞, w

0
∞) in

C2(Ω̄) satisfying

0 = d2∆v
0
∞ + v0∞(m(x)− v0∞ − w0

∞) in Ω,

0 = d3∆w
0
∞ + w0

∞(m(x)− v0∞ − w0
∞) in Ω,

∂v0∞
∂n

=
∂w0

∞
∂n

= 0 on ∂Ω.

(5.4)

Clearly, v0∞, w
0
∞ cannot be both positive. There will be three possible cases, i.e., (a) (v0∞, w

0
∞) = (0, 0);

(b) (v0∞, w
0
∞) = (0, w∗(d3)); (c) (v0∞, w

0
∞) = (v(d2), 0). However, essentially the same proof as in [43,

Lemma 4.5] implies that none of them can happen. Suppose that the case (a) occurs. Let v̂n =
v0
n

∥v0
n∥L∞ .

We have

0 = d2∆v̂n + (m(x)− u0n + v0n − w0
n)v̂n.

We can assume, by passing to a subsequence if necessary, that v̂n → v̂∗ with ∥v̂∗∥L∞ = 1, where v̂∗

satisfies 0 = d2∆v̂
∗ + (m(x) − w∗(d3))v̂

∗. However, 0 = d3∆w
∗(d3) + (m(x) − w∗(d3))w

∗(d3), so the

principal eigenvalue of the operator Lw = d3∆w + (m(x) − w∗(d3))w is 0, so the strict monotonicity of

the principal eigenvalue with respect to the diffusion coefficient gives a contradiction to 0 = d2∆v̂
∗+(m(x)

− w∗(d3))v̂
∗. The argument for the case (b) is very similar so we omit it. In the case (c) we use ŵn =

w0
n

∥w0
n∥L∞ and pass to a limit ŵ∗. An argument analogous to the one given previously for v̂∗ leads to the

equation 0 = d3∆ŵ
∗+(m(x)−v(d2))ŵ∗ with ∥ŵ∗∥L∞ = 1, but since 0 = d2∆v(d2)+(m(x)−v(d2))ŵ∗v(d2)

and d3 ̸= d2 this also leads to a contradiction. Hence none of (a), (b) or (c) is possible, so there cannot

be a coexistence state as β → 0+. Following the same idea as in the proof of Lemma 4.5, we can see that

β → β−
0 with β0 = d2−d3

d3−d1
α, there is no coexistence steady state.

A parallel result is stated below when α varies.

Lemma 5.2. Assume that d1 < d3 < d2 and maxx∈Ω̄m(x) 6 β. Then the following statements are

valid:

(i) There exists a unique αc ∈ (d3−d1

d2−d3
β,∞), such that (0, 0, w∗) is linearly unstable when α ∈ (0, αc),

and linearly stable when α ∈ (αc,∞).

(ii) (u∗, v∗, 0) is linearly stable when α is small enough, and linearly unstable when α ∈ [d3−d1

d2−d3
β,∞).

(iii) There exists small ϵ > 0, such that the system (4.1) admits no positive steady state when α ∈
(0, ϵ) ∪ (d3−d1

d2−d3
β − ϵ,∞).

Proof. We only prove the statement (i) when α is large, as the other cases are analogous to the proof in

Lemma 5.1. By an argument similar to those in Lemma 5.1, we have λ2(α) is continuously differentiable

in α > 0, and λ(α) > 0 when α 6 d3−d1

d2−d3
β. A direct computation shows that λ′2(α) =

∫
Ω
(βϕ1ϕ2−αϕ2

1)∫
Ω
(αϕ2

1+βϕ2
2)

. If

λ2(α) = 0 for some α > 0, then we see from (4.10) and (4.12) that∫
Ω

(αϕ21 − βϕ1ϕ2) = −d1
∫
Ω

|∇ϕ1|2 +
∫
Ω

(m− w∗)ϕ21 > 0.

Therefore, λ′2(α) < 0 when λ2(α) = 0. This implies that λ2(α) can change signs at most once. Suppose

λ2(α) does not change signs, i.e., λ2(α) > 0, ∀α > 0. Since∫
Ω

(βϕ22 − αϕ1ϕ2) + λ2

∫
Ω

ϕ22 = −d2
∫
Ω

|∇ϕ2|2 +
∫
Ω

(m− w∗)ϕ22 < 0
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and

α

[ ∫
Ω

(αϕ21 − βϕ1ϕ2)

]
+ β

[ ∫
Ω

(βϕ22 − αϕ1ϕ2)

]
> 0,

we have
∫
Ω
(αϕ21 − βϕ1ϕ2) > 0, so is λ′(α) < 0. Hence λ2(α) is strictly decreasing in α > 0 and uniformly

bounded from below. Let (ϕ1α, ϕ2α) ∈ C2,ν(Ω̄,R)2+) with
∫
Ω
(αϕ21α + βϕ22α) = 1 be the associated

eigenfunction with λ2(α). Then λ2(α) → λ∞ > 0, as α→ ∞.

A straightforward calculation indicates that∫
Ω

ϕ21α =
−d1

∫
Ω
|∇ϕ1α|2 +

∫
Ω
((m− w∗ − λ2)ϕ

2
1α + βϕ1αϕ2α)

α

6 m̄+ β

α
→ 0, α→ ∞,

and

0 <

∫
Ω

(αϕ21α − βϕ1αϕ2α) = −d1
∫
Ω

|∇ϕ1α|2 +
∫
Ω

(m− w∗ − λ2)ϕ
2
1α 6 m̄

∫
Ω

ϕ21α

which yields that limα→∞
∫
Ω
αϕ21α = 0 and limα→∞

∫
Ω
α|∇ϕ1α|2 = 0 due to the fact from (4.12) that

−αd1
∫
Ω

|∇ϕ1α|2 + α

∫
Ω

(m− w∗)ϕ21α > 0.

In view of identity (4.12) again, we have∫
Ω

(αϕ1α − βϕ2α)
2 6

∫
Ω

(m− w∗)αϕ21α 6 m̄

∫
Ω

αϕ21α → 0, α→ ∞.

Therefore, ∥αϕ1α − βϕ2α∥L2(Ω) → 0 as α→ ∞.

Now replace λ2 and (ϕ1, ϕ2) by λ2(α) and (ϕ1α, ϕ2α) in (4.12) and let α→ ∞. Then we obtain

lim
α→∞

−d2
∫
Ω

|∇ϕ2α|2 +
∫
Ω

(m− w∗)ϕ22α = λ∞ > 0.

Indeed, λ∞ = 0 due to the fact that −d2
∫
Ω
|∇ϕ2α|2 +

∫
Ω
(m − w∗)ϕ22α < 0 for any α > 0. Now we see

that ϕ2α is bounded in H1(Ω) when α is large. This implies (up to a subsequence if necessary) ϕ2α → ϕ∞
in L2(Ω) with ∥

√
βϕ∞∥L2(Ω) = 1. Let Aϕ := −d2∆ϕ − (m − C)ϕ for some large C > λ(d2,m). Then

A−1 : L2(Ω) → H2(Ω) is a continuous operator. Passing to the limit in

ϕ2α = A−1[αϕ1α − βϕ2α + (C − λ2(α))ϕ2α],

we get ϕ∞ = A−1((C − β)ϕ∞). The standard elliptic regularity implies ϕ∞ ∈ C1,ν(Ω̄), and hence,

−d2
∫
Ω

|∇ϕ∞|2 +
∫
Ω

(m− w∗)ϕ2∞ = 0

and ϕ∞ ̸≡ 0, i.e., 0 6 λ(d2,m− w∗) < λ(d3,m− w∗) = 0, which leads to a contradiction.

It follows immediately that λ2(α) changes sign once and has a unique αc ∈ (0, d3−d1

d2−d3
β) such that

λ2(αc) = 0.

Now we are ready to state two parallel results on the global dynamics of the boundary steady state

in terms of α and β, respectively. They follow from the same arguments based on monotone dynamical

systems that are used in Theorem 3.6.

Theorem 5.3. Assume that d1 < d3 < d2 and maxx∈Ω̄m(x) 6 α. Then there exist some 0 < C1 6
C2 <

d2−d3

d3−d1
α such that the following statements are valid:

(i) (0, 0, w∗) is globally asymptotically stable in X+
1 × (X+

2 \ {0}) when β ∈ (0, C1).

(ii) (u∗, v∗, 0) is globally asymptotically stable in (X+
1 \ {0})×X+

2 when β ∈ (C2,∞).

Theorem 5.4. Assume that d1 < d3 < d2 and maxx∈Ω̄m(x) 6 β. Then there exist some 0 < C1 6
C2 <

d3−d1

d2−d3
β such that the following statements are valid:

(i) (0, 0, w∗) is globally asymptotically stable in X+
1 × (X+

2 \ {0}) when α ∈ (C2,∞).

(ii) (u∗, v∗, 0) is globally asymptotically stable in (X+
1 \ {0})×X+

2 when α ∈ (0, C1).
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6 Conclusions

For the two-component subsystem (2.1) we have derived conditions under which it is asymptotically

competitive or cooperative. In the asymptotically cooperative case we have derived further conditions

implying the existence of a unique globally stable positive equilibrium. We have obtained various eigen-

value estimates that determine the stability of the trivial solution (0, 0). Some of the results for (2.1)

are extensions of those in [6] to cases where some coefficients may vary in x. We should note that we

have not been able to give a complete analysis of the stability of (0, 0) in the indefinite case, i.e., where

the local population growth rate m(x) can change sign, reflecting the presence of both sources and sinks

in the overall environment. This is due to the fact that we do not know of an extension of a key result

from [22] to systems of equations. A major reason why results implying that the sub-model (2.1) has a

unique globally attracting positive equilibrium are interesting is that in such a case (2.1) behaves like a

single logistic equation and hence it is reasonable to view the populations u and v together as a single

population consisting of individuals that can switch their dispersal behavior.

The main problem motivating this paper was that of understanding how well a population whose

members can switch between slow and fast diffusion rates d1 and d2 could compete against an ecologically

identical population where all individuals diffuse at a single intermediate rate d3. What we found was

that if d3 < d1 < d2 then the semi trivial equilibrium (u∗, v∗, 0) of (4.1) is unstable and (0, 0, w∗) is stable,

while if d1 < (αd1+βd2)/(α+β) < d3 then (u∗, v∗, 0) stable and (0, 0, w∗) is unstable. Furthermore, both

semi trivial equilibria change their stability for some values of d3 in the interval (d1, (αd1+βd2)/(α+β)).

Thus, the size of the diffusion rate d3 relative to the average of diffusion rates d1 and d2 weighted by the

switching rates α and β seems to be informative about which of the populations (u, v) and w has the

advantage. In some cases we were able to show the nonexistence of a positive (coexistence) equilibrium

for (4.1), which then implies competitive exclusion when combined with suitable results on stability of

semi trivial equilibria.

There remain many challenging open questions about (4.1) and related models. In the case where

m(x) changes sign, we do not have a uniqueness result for the principal eigenvalue of the linearized

model corresponding to the sub model (2.1). Since we can show that the semi trivial equilibria can

change stability as d3 or α or β vary we expect that the system (4.1) will have bifurcations that produce

coexistence states (which might be unstable), but we have not explored a bifurcation theoretic approach,

and we do not have enough information about the relative locations relative to d3 of the points where

the stabilities of (u∗, v∗, 0) and (0, 0, w∗) change to use monotone methods to show the presence of

coexistence states. It should be possible to address these and other questions but that will require

additional research. In a different direction, it would be interesting to consider models with different

types of dispersal operators, boundary conditions, or interaction terms. Another topic of interest would

be to try to see if and when adaptive switching that mimics area restricted search (i.e., switching that is

biased toward slower diffusion at locations where m(x) is large, but toward faster diffusion where m(x) is

small) is advantageous versus diffusion at a fixed rate everywhere. Some numerical results about this type

of phenomenon in a more realistic dispersal model are given in [12]. In general, the idea that organisms

switch between different movement modes has considerable empirical support and leads to mathematical

models whose analysis is challenging but within the scope of current mathematical methods. For those

reasons we think dispersal models with switching are an interesting topic for further study.

Acknowledgements This work was supported by National Science Foundation of USA (Grant No. DMS-

1514752).

References

1 Amann H. Maximum principles and principal eigenvalues. In: 10 Mathematical Essays on Approximation in Analysis

and Topology. Amsterdam: Elsevier, 2005, 1–60

2 Brown K J, Zhang Y. On a system of reaction-diffusion equations describing a population with two age groups. J

Math Anal Appl, 2003, 282: 444–452



Cantrell R S et al. Sci China Math March 2020 Vol. 63 No. 3 463

3 Cantrell R S, Cosner C. On the steady-state problem for the Volterra-Lotka competition model with diffusion. Houston

J Math, 1987, 13: 337–352

4 Cantrell R S, Cosner C. Spatial Ecology via Reaction-diffusion Equations. Chichester: John Wiley & Sons, 2003

5 Cantrell R S, Cosner C, Lou Y. Advection-mediated coexistence of competing species. Proc Roy Soc Edinburgh Sect

A, 2007, 137: 497–518

6 Cantrell R S, Cosner C, Yu X. Dynamics of populations with individual variation in dispersal on bounded domains. J

Biol Dyn, 2018, 12: 288–317

7 Conway E, Smoller J. A comparison technique for systems of reaction-diffusion equations. Comm Partial Differential

Equations, 1977, 2: 679–697

8 Cosner C. Reaction-diffusion-advection models for the effects and evolution of dispersal. Discrete Contin Dyn Syst,

2014, 34: 1701–1745

9 Dancer E. On the principal eigenvalue of linear cooperating elliptic systems with small diffusion. J Evol Eqn, 2009, 9:

419–428

10 Dockery J, Hutson V, Mischaikow K, et al. The evolution of slow dispersal rates: A reaction-diffusion model. J Math

Biol, 1998, 37: 61–83

11 Elliot E C, Cornell S J. Dispersal polymorphism and the speed of biological invasions. PLoS One, 2012, 7: e40496

12 Fagan W F, Hoffman T, Dahiya D, et al. Improved foraging by switching between diffusion and advection: Benefits

from movement that depends on spatial context. Theor Ecol, 2019, in press

13 Fleming C H, Calabrese J M, Mueller T, et al. From fine-scale foraging to home ranges: A semivariance approach to

identifying movement modes across spatiotemporal scales. Am Nat, 2014, 5: E154–E167

14 Fryxell J, Hazell M, Borger L, et al. Multiple movement modes by large herbivores at multiple spatiotemporal scales.

Proc Natl Acad Sci USA, 2008, 49: 19114–19119

15 Girardin L. Non-cooperative Fisher-KPP systems: Traveling waves and long-time behavior. Nonlinearity, 2018, 31:

108–164

16 Girardin L. Non-cooperative Fisher-KPP systems: Asymptotic behavior of traveling waves. Math Models Methods

Appl Sci, 2018, 28: 1067–1104

17 Girardin L. Two components is too simple: An example of oscillatory Fisher-KPP system with three components.

ArXiv:1812.05336, 2018

18 Hastings A. Can spatial variation alone lead to selection for dispersal? Theor Pop Biol, 1983, 24: 244–251

19 He X, Ni W-M. Global Dynamics of the Lotka-Volterra competition-diffusion system: Diffusion and spatial hetero-

geneity I. Comm Pure Appl Math, 2016, 69: 981–1014

20 Hei L J, Wu J H. Existence and stability of positive solutions for an elliptic cooperative system. Acta Math Sin Engl

Ser, 2005, 21: 1113–1120

21 Hess P. Periodic-Parabolic Boundary Value Problems and Positivity. Pitman Search Notes in Mathematics Series, vol.

247. Harlow: Longman Scientific Technical, 1991

22 Hess P, Kato T. On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm Partial

Differential Equations, 1980, 10: 999–1030

23 Hess P, Lazer A C. On an abstract competition model and applications. Nonlinear Anal, 1991, 16: 917–940

24 Hsu S B, Smith H L, Waltman P. Competitive exclusion and coexistence for competitive systems on ordered Banach

spaces. Trans Amer Math Soc, 1996, 348: 4083–4094

25 Kato T. Superconvexity of the spectral radius, and convexity of the spectral bound and the type. Math Z, 1982, 180:

265–273

26 Kato T. Perturbation Theory for Linear Operators. Berlin-New York: Springer-Verlag, 1984

27 Lam K-Y, Lou Y. Asymptotic behavior of the principal eigenvalue for cooperative elliptic systems and applications. J

Dynam Differential Equations, 2016, 28: 29–48

28 Lam K-Y, Munther D. A remark on the global dynamics of competitive systems on ordered Banach spaces. Proc Amer

Math Soc, 2016, 144: 1153–1159
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